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A Characterization of t/s-Diagnosability and Sequential 
t-Diagnosability in Designs 

JOO-KANG LEE AND JON T. BUTLER 

Abstmct-A multiprocessing system is t/s-diagnosable if all faulty 
processors can be identified to within s processors provided there 
are no more than t faulty processors. A characterization theorem of 
Karunanithi and Medman 14) for 0s-diagnosability in certain special 
cases of systems called designs is extended to the entire class ofDl,,,(n) 
designs. We show that for large t ,  s is approximately t2 /4 t ’ .  Further- 
more, the minimum number of processors needed to attain a given 
diagnosability is derived. 

A multiprocessor system is sequentially t-diagnosable if at least one 
faulty processor can be identified provided there are no more than t 
faulty processors. A theorem by Preparata, Metze, and Chien 171 giving 
a sufficient condition for sequential t -diagnosability in the single loop 
system, a special case of designs, is extended to the entire class of 
D I , ~ . ( ~ )  designs. We show that, for large t ,  approximately t2 /4 t ’  nodes 
are needed for a Dl,,.(n) design to be sequentially t-diagnosable. 

Index Terms- Multiprocessing systems, reliable computing, systems 
diagnosis, t-diagnosable, t/s-diagnosable, testing. 

I. INTRODUCTION 

In the systems diagnosis approach to reliable computing, fault loca- 
tion is achieved by tests among processors. We assume that fault-free 
processors produce test results that are a true representation of the 
tested processor, fail if it is faulty and pass if it is fault-free. In the 
case of faulty processors, however, the test results by such processors 
may not be correct. The goal is to determine exactly which proces- 
sors are faulty. However, if there are too many faulty processors, 
incorrect test information can cause ambiguity. 

Our model is that of Preparata, Metze, and Chien [7]. A system 
S is a directed graph where nodes represent processors and arcs 
represent tests among processors. Node ui tests node uj iff there is 
a directed arc from ui to u j .  Each node has one of two states, faulty 
or fault-free, and each arc has one of two weights, pass or fail. For 
example, Fig. 1 shows a system of 12 nodes and two arrangements of 
three faulty nodes, which are indicated by X’s. Fail test outcomes are 
indicated by l’s, while unmarked arcs correspond to pass outcomes. 

A system is (one-step) t-diagnosable if all faulty nodes can be 
uniquely identified provided there are no more than t of them. For 
example, the system in Fig. 1 is not 3-diagnosable because the set 
of test outcomes shown in Fig. l(b), which is produced with u3, u4, 
and u5 faulty, can also be produced with just u3 and u4 faulty. Thus, 
if we assume there are three or fewer faulty nodes in the system, 
us cannot be uniquely identified as faulty. t-diagnosability represents 
worst case conditions. For example, the three faulty nodes in Fig. 
l(a) are uniquely faulty. 

S is a D6.,t(n) design iff an arc exists from node ui to U j  for 
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1 - fail test outcome 
Unmarked outcomes are pass 

uO u1 u2 u3 u 4  u7 u8 uQ u10 ull “ 0  

(a) 

(3) 

Fig. 1. Examples of a 01,2(12) design. 

j - i = 6p mod n ,  and p assumes the values 1, 2, . , . , t’, where n 
is the number of nodes [7]. For example, the system in Fig. 1 is a 
Dl,2(12) design. From 171, Ds,r , (n)  is t’-diagnosable iff n 2 2t’+l.  
Thus, the system of Fig. 1 is 2-diagnosable. Preparata, Metze, and 
Chien [7] observe that, when 6 and n are relatively prime, a Dg, ( n )  
design is isomorphic to a D l , l , ( n )  design. Thus, the diagnosability 
of the former is identical to that of the latter. In the following, we 
restrict our attention to Dl , , t (n)  designs, with the recognition that a 
larger class of systems is characterized. 

When the number of faulty nodes exceeds t in a t-diagnosable 
system, it may be necessary to replace fault-free nodes in order to 
replace all faulty nodes. A system is tls-diagnosable iff all faulty 
nodes can be identified to within a set of s nodes, provided there 
are no more than t faulty nodes. s depends on t. For example, from 
previously published results [4] and from results in this paper, we 
can conclude that D1,2(12) is t/s-diagnosable for t / s  = 111, 212, 
314, 416, 518, and i112, where 6 5 i 5 12. The last result, ill2, also 
follows from an observation in [7], that when the number of faulty 
nodes equals or exceeds the number of fault-free nodes, the ambiguity 
of the fault/fault-free status of nodes can extend to the entire set of 
nodes. 

Building on results of Freidman 121, Karunanithi and Friedman 
[4] characterize t 1s-diagnosability in two special cases of D ,, I I ( n )  
designs, 

1 )  t’ = 1, and (1) 

That is, for these two cases, an expression is derived for s as a 
function of t when a minimal number nmln of nodes exists. Fur- 
thermore, an expression for nmin is derived. We extend this result 
to 2 5 t’ 5 lt/2], covering all other cases of D l , l ~ ( n )  designs. We 
show that, for such designs, both s and nmin are approximately t2  /4t’ 
when t is large. Thus, the status of almost all nodes in designs with 
a near minimal number of nodes can be uncertain in the worst case. 

A system is sequentially t-diagnosable iff at least one faulty 
node can be identified provided there are no more than t of them. 
Preparata, Metze, and Chien [7] show a lower bound v on the num- 
ber of nodes n in a special case of D l , l ( n )  designs, called single 
loop systems, such that such systems are sequentially t-diagnosable. 
That is, it is shown that if n 2 P, then D 1 ,  1 (n) is sequentially t- 
diagnosable, where v depends on t’. We extend this result to all 
D l , , f ( n )  designs. For example, D1,2(12) in Fig. 1 is sequentially 
5-diagnosable. Specifically, we show a lower bound nmin on the 
number of nodes n such that, if n 2 nminr a D l , t / ( n )  design is se- 
quentially t-diagnosable. For example, D,, 2 ( n )  is sequentially 5- and 
6-diagnosable for .n 2 11 and n 2 13, respectively. 

Neither t 1s-diagnosability nor sequential t-diagnosability have 
been characterized in general systems. Chwa and Hakimi [l] char- 
acterize t / t  -diagnosability, a topic originally studied by Kavianpour 
and Friedman 151. Yang, Masson, and Leonetti [lo] give a polyno- 

mial time algorithm, in which all faulty nodes in a t/t-diagnosable 
system can be identified except perhaps at most one node, whose 
status is in doubt. Manber [6] extends the class of known sequen- 
tially t-diagnosable systems to certain strongly connected systems. 
Somani, Agrawal, and Davis [8] characterize the diagnosability of 
fault sets in systems. Sullivan [9] was the first to give necessary and 
sufficient conditions for t-diagnosability in general systems which 
can be checked in polynomial time, unlike previous exponential time 
conditions [3]. 

11. BACKGROUND 

We can divide nodes into three categories. 
Definition: Given a system, a set of test outcomes U ,  and an 

integer f, a node U is definitely good (definitely bad) with respect 
to U if the assumption that U is faulty (fault-free) implies there are 
more than f faulty nodes. A node which is neither definitely good 
nor definitely bad is suspect. 

For example, for f = 3 and for the set of test outcomes shown 
in Fig. l(b), u2,  u3, and u5 is a definitely good, definitely bad, 
and suspect node, respectively. Note that for any set of test out- 
comes produced by any arrangement o f t  or fewer faulty nodes in a 
t-diagnosable system, the definitely bad nodes correspond exactly to 
the faulty nodes, when f = t .  Furthermore, there are no suspects. 
The t-diagnosability of the system precludes such ambiguity. There 
can be as many as s suspects in a t/s-diagnosable system. For exam- 
ple, in the 01,2(12)  system of Fig. 1, which is iIl2-diagnosable for 
6 5 i 5 12, when there are six or more faulty nodes, each of the 12 
nodes in the system is suspect if all faulty nodes fail fault-free nodes 
they test and pass faulty nodes they test. From the results shown be- 
low, if at least one faulty node can be identified in a D1, t / ( ~ )  design, 
there can be as many as s - t’ suspects. 

Let F denote a set of faulty nodes in a system S ,  where IF 1 5 t .  
Let U be a syndrome or set of test outcomes produced by F. FR is 
a replacement set generated by F through U if 

F R =  U F ,  (3) 
I 

where F ,  produces U and IF, I 5 t. It follows that U E F R  iff U is 
definitely bad or suspect with respect to U .  The term replacement 
set is used to indicate that, in order to replace all faulty nodes, all 
nodes in the replacement set must be replaced by fault-free nodes. 
Each definitely bad node is common to all F ,  , while each suspect 
is missing from at least one F ,  . FR is a maximal replacement set 
if there is no larger replacement set with respect to any set of test 
outcomes U produced by any fault set of t or fewer nodes. In a t /s-  
diagnosable system, s = JFR 1, where FR is a maximal replacement 
set. 

111. RESULTS 
The diagnosability of a system reflects worst case conditions. That 

is, in a t/s-diagnosable system, all faulty nodes can always be iden- 
tified to within a set of size s provided that there are no more than 
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t faulty nodes. However, for a specific arrangement of faulty nodes, 
it may be possible to identify the faulty nodes to within a set of size 
smaller than s. 

Our main result, Theorem 1 ,  gives necessary and sufficient con- 
ditions for a D I , , / ( n )  design to be t/s-diagnosable. We proceed by 
showing worst case conditions, the largest replacement set among 
all replacement sets associated with fault sets of t or fewer nodes. 
Lemma 1 shows that such a set consists of consecutive nodes. Lem- 
mas 2 and 3 give characteristics of a certain fault set which produces 
the largest replacement set. Theorem 1 establishes the size of the 
largest replacement set. 

Lemma I :  Let FR be a maximal replacement set in a D,, (n) 
design corresponding to a set of test outcomes produced by a fault set 
of size t or smaller, where t > t’. Then, FR is a set of consecutive 
nodes. 

Proof: On the contrary, assume there exists a maximal replace- 
ment set FR consisting of p > 2 segments, Bo, B 1  , . . . , B , - , ,  of 
definitely bad and suspect nodes separated by definitely good nodes, 
where the direction of tests is toward increasing index. Because of the 
intervening definitely good nodes, if lB;l 5 t’, all nodes in B; are 
definitely bad, and if IB; I > t’, the first t’ nodes are definitely bad, 
while the remaining are suspect. Furthermore, since t > t’, there is at 
least one suspect in a maximal replacement set, FR. On the contrary, 
if all nodes in FR are definitely bad, IFRI 5 t ,  since there can be 
no more definitely bad nodes than faulty nodes. However, IFRI > t ,  
as illustrated by the following; consider syndrome U produced by a 
sequence o f t  consecutive faulty nodes F = { u k ,  u k + l , .  . . , u ~ + , - I  }, 
where all test results by faulty nodes are pass except for the test of 
fault-free node uk+, by faulty node &+f-,, which is fail. Node uk+, 
is tested by faulty nodes exclusively, and, since t > t’, its faultylfault- 
free status cannot be uniquely determined. The replacement set in 
this case contains at least t + 1 elements. So also does a maximal 
replacement set, FR. Since there is at least one suspect, there is at 
least one segment B; containing a suspect, and JBi 1 > t .  

Let Gi be the definitely good nodes between B; and B ; + l ,  where 
index addition is modp.  Since the direction of tests is toward in- 
creasing index, nodes in B; test nodes in G;, and nodes in G; test 
nodes in B;+l .  Given a sequence of nodes B ,  * B  is B if IBI 5 t’ 
and is the first t’ nodes of B beginning with the (unique) node in 
B not tested by another node in B ,  if IBI > t‘. We now show that 
a sequence of l*B;+l I nodes in G; nearest Bi can be converted to 
suspect nodes. 

Indeed IC; I > I*Bi+l 1, as follows. Nodes that are definitely bad in 
FR correspond to nodes that are faulty in all fault sets which gener- 
ate FR. Thus, i f F  is a fault set which generates FR through U ,  then 
tests by such nodes are arbitrary. Consider the case where tests by 
definitely bad nodes are all pass. All nodes in G I  are tested by defi- 
nitely bad and suspect nodes in B; . Furthermore, all suspects in Bi 
which test nodes in G ;  must produce pass test outcomes; no suspect 
fails a definitely good node. Then, regardless of other test outcomes, 
F’ = F UG; -* B;,, is a fault set which generates FR through U .  

If lG;l 5 ~*B;+I I, IF’I 5 IF1 5 t ,  and nodes in G; are suspect, not 
definitely good, as assumed. Then, it must be that IC; I > I*B;+l 1. 

Form 
a new system by removing the sequence of nodes G; - G * along 
with tests by these nodes and inserting them immediately before the 
definitely bad nodes in Bi. The severed tests are applied in their 
original order, so that the resulting system is a D1, , , (n )  design. 
Retain the outcomes of all tests, except 

1) Test outcomes of tests applied by nodes in G; - Gf* after 
rearrangement agree with the definitely good node immediately pre- 
ceding B; before rearrangement, 

2 )  Test outcomes of tests applied by nodes in GiPl to nodes in B; 
after rearrangement agree with the test outcomes before rearrange- 
ment of the definitely good node immediately preceding Bi.  Test 
outcomes of the tests applied by nodes in Gj-l  to nodes G; - G f *  
after rearrangement are all pass, and 

3) Test outcomes of tests applied by nodes in B; to nodes in Gf * 
and follow on nodes agree with the test results of the node in Gi - 
Gf * immediately preceding Gf * before rearrangement. 

Let G f *  be the I*Bi+l I nodes in G; just preceding 

By virtue of the choice of test outcomes, a fault set F consis- 
tent with the syndrome before rearrangement is consistent after. 
However, F‘ = F u G f *  -* Bi+l is now also consistent. Since 
IF’( = IF1 5 t ,  nodes in Gf* are now suspect, as are nodes in 
*B;+l .  Thus, the total number of definitely bad nodes and suspects 
is larger. It follows that FR is not a maximal replacement set as 
assumed. Q.E.D. 

For the interested reader, the Appendix illustrates the proof of 
Lemma 1 using a specific design. In a t/s-diagnosable system, if 
there are t or fewer faulty nodes, their location extends, in the worst 
case, to a set of s nodes. From Lemma 1, this worst case corresponds 
to consecutive nodes. The next two lemmas concern the characteris- 
tics of fault sets for this worst case situation. 

Lemma 2: Let FR be a maximal replacement set in a Dl , , , (n )  
design with t > t’ faulty nodes. If there is at least one definitely 
good node, then there exists a fault set F which generates FR such 
that each faulty node in F belongs to a sequence of consecutive faulty 
nodes of length t’ or more. 

Proof: Assume there is at least one definitely good node, and 
let FR be a maximal replacement set in DI, , , (n) .  Let U be a set 
of test outcomes and F‘ be a set of t or fewer nodes such that F’ 
generates FR through U. F’ consists of segments Fo, F , . . . , F ,  -1  

of consecutive faulty nodes separated by fault-free nodes, where the 
direction of tests is toward increasing index. We proceed by showing 
that, if there is at least one segment F ;  such that IFi] < t’, then 
there is another fault set F which generates FR, where all nodes in 
F belong to a sequence of consecutive faulty nodes each of length t’ 
or more. 

It is sufficient to show that under the above conditions, we can 
join F ;  with Fi- ,  without changing FR, where index subtraction is 
modq. Indeed, there is at least one other segment, since IF; I < t’ 
and t > t’. Let F F ;  be the segment of fault-free nodes immediately 
following F ; ,  where the direction of tests is from F ;  towards FF; . 

Since there is at least one definitely good node, there is a def- 
initely good node u immediately preceding FR. From Lemma 1 ,  
FR is a set of consecutive nodes, and it has length greater than 
t’. Thus, all outcomes of tests by u are fail. On the contrary, if 
any test outcome is pass, the tested node must be definitely good. 
Thus, the first t‘ nodes of FR are definitely bad, while all subsequent 
nodes in FR are suspect. Since IF; I < t’, F ;  does not contain the 
first t‘ definitely bad nodes, and so F ;  contains only suspect nodes, 
while F l - l  consists of suspects and/or definitely bad nodes. Sim- 
ilarly, FFi consists of suspects and/or definitely good nodes. Let 
F F j - l / j  = F F ; - ,  U {suspects in F F ; }  = {uo ,  uI,...,ug} . Fur- 
thermore, assume that the indexes correspond to the natural order 
of nodes as determined by tests. That is, uo, u l , .  . . , and ulFF,_,  
correspond to the nodes of F F ; - I ,  such that uo tests u1, U I  tests 
uz, etc. Similarly, u is the first suspect in F F ; ,  U I ~ ~ , - , I + ~  
is the second, etc. $FeFca<de nodes in F F i P 1  and FF; are fault- 
free, all tests among nodes in F F , - , / ;  are pass. Since ug is SUS- 
pect, there is a fault set F ” ,  where IF”( < t which generates FR 
through U ,  such that ug E F ” .  Since there is a path of pass test 
outcomes from any U, E F F j - l / ;  to ug, uj E F ” .  Thus, ug E F” 
implies FFi- l j ;  C F”. 

Besides F‘ and F ” ,  there are other sets which generate FR 
through U. F “ ,  which contains the first k nodes of FFiel  I ,  where 
1 < k < lFF;-l/ i  1, is consistent with U .  However, F” U F”’ = F ” ,  
and since IF ’ I  I 5 t , then IF ”I  I 5 t . Therefore, it is sufficient to con- 
sider fault sets which contain all members of F F j -  ,/; or no members 

Note that this observation is independent of the position of Fi 
within F F ;  - I  li . Specifically, the following rearrangement of nodes 
and tests leaves FR unchanged, but produces a fault set generating 
FR which is the same as F’ except F i P l  and F; are combined as 
a single sequence of faulty nodes. That is, all nodes in F ;  plus all 
tests by F ;  are inserted between F j W l  and F F j P l .  All tests are 
reconnected in their natural order, and all test results among faulty 
nodes after rearrangement are pass. Q.E.D. 

From Lemma 1 ,  a maximal replacement set FR in a Dl, , , (n)  
design corresponding to a set o f t  > t’ faulty nodes consists of con- 

of FFj- l / ; .  
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Fig. 2. The canonic fault set. 

secutive nodes. From Lemma 2, there is a fault set F which generates 
FR where all nodes in F belong to segments of consecutive nodes of 
length at least t’.  Also, from the proof, it is clear that F generates FR 
through a set of test outcomes U where no faulty node fails another 
faulty node. Thus, fail test outcomes in U occur only between nodes 
of different status, and U consists of c groups of fail test outcomes 
separated by pass test outcomes. Let C be a canonic fault set which 
generates a maximal replacement set FR iff all nodes in C belong to 
segments of consecutive nodes of length t’ or greater with at most 
one segment having length strictly greater than t’. The existence of 
C is assured because it is consistent with U .  That is, each of the 
c groups of fail test outcomes in U corresponds to t’ faulty nodes 
with the last group (farthest from the definitely bad nodes in FR in 
the direction of tests) having an additional t - t’c consecutive faulty 
nodes. 

Lemma 3: Let FR be a maximal replacement set in a DI, , , (n)  
design with t > t’ faulty nodes. If there exists at least one definitely 
good node, a segment of suspect fault-free nodes F F ,  that follows 
a segment of faulty nodes in a canonic fault set which generates FR 
has the property 

(4) 

where c E { r t / 2 t ’ l ,  Lt/2t‘]} such that c( t  - t’c) + t  has maximum 
value. 

Proof: Let Fo, F I  . . . . .  and Fk be the segments of consecutive 
faulty nodes in C, and let F F ,  be the fault-free nodes between F,  
and F,+l .  Because t > t ’ ,  k 2 1. If there is at least one definitely 
good node, one segment is definitely bad. Let Fo be the set of 
t’ definitely bad nodes in FR, and let U be the syndrome which 
generates FR in which all faulty nodes produce pass test outcomes. 
Since F,+1, for 0 5 i 5 k - 1, is a set of suspects, there is another 
fault set not containing F,+l .  But this implies containment of F F ,  . 
Since IF,( = t’ (by Lemma 2 and the definition of C) ,  there are 
no tests between adjacent FF,’s.  Thus, a smallest fault set F such 
that F,+l  $L F is F = C - L - F,+l U F F , ,  where L is the last 
t - t’c - t’ faulty nodes in F k  in the direction of tests. The fail 
test outcomes at the site of each of the k other F ,  imply at least r’ 
faulty nodes. Since (C -15 = t’(k + 1) and IFF,+I I = t ’ ,  it follows 
that IFF, 1 + t’k I t .  Thus, IFF, 1 5 t - t ‘k .  But FR is a maximal 
replacement set, and so 

IFF, I = t - t‘c 

lFFj I m a x  = t - t’k,  ( 5 )  

and 

s = k(FFi Imax + t .  

From ( 5 )  and (6), we have 

s = k( t  - t’k) + t (7) 
where k is chosen so that d s / d k  is 0. Thus, k = [t/2t’l or Lr/2t’]. 

Q.E.D. 
Lemma 2 and the observations that follow it show that the canonic 

fault set C generates a maximal replacement set FR. Lemma 3 shows 
that the number of fault-free nodes separating segments of faulty 
nodes in C has some maximum value, t - t’c.  Fig. 2 shows the 
canonic fault set C and a syndrome U produced by it. Each column 
associated with U corresponds to the test results of the node just above 
the column. 0 is pass and 1 is fail. That is, in a D1, , t (n )  design, 
nodeu, testsu, i f f j - i = p m o d n , w h e r e p =  1,2; . . , t ’ .The 
top row of test results corresponds to p = 1 ,  the second corresponds 
to p = 2 , .  . . .  and the last corresponds to p = t ’ .  Thus, the leftmost 
node in F ,  fails all tests applied to it, since these are by fault-free 
nodes. The next node fails all but one test, that by the faulty node 
just to its left, etc. Fig. 2 also shows other fault sets C1, C2,. . . .  
and C, which generate U .  Note that in C,  the nodes just preceding 
F ,  in C are faulty. These are nodes which are fault-free with respect 
to F, and thus are suspect nodes, since IC, I = t .  Since these nodes 
are fault-free in C,  they are suspect nodes. Fig. 2 also shows C’, 
the fault set with fewest nodes (c + 1)t’ which generates FR. 

Since nodes in R are definitely good, the assumption that any one 
is faulty leads to the conclusion that there are more than t faulty 
nodes in the system. This imposes a lower bound on the size of R .  
For example, if the node in R immediately preceding Fo is faulty, 
then so also are all nodes in R ,  as well as all nodes in the segment 
of t - t’c - t’ nodes labeled L in Fig. 2 .  The smallest number of 
remaining faulty nodes that is consistent with the fail test outcomes 
is ct’ ,  all nodes in C’ less those in Fo. Thus, we require IRI + t - 
t’c - t’ + t’c = 1R I + t - t’ > t or 

IRI > t ’ .  (8) 

This observation is a part of the proof of Theorem 1. 
Theorem 1: Design D l , t , ( n )  is t/s-diagnosable iff 

n 2 nmln = s + min ( t ,  t ’ )  + 1 (9) 

where 

s = max 
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D, , r t (n )  DESIGNS, WHERE n 2 nmln. ENTRIES REPRESENT s/nmm 
S AND nmin FOR t /S-DIAGNOSABILlTY AND SEQUENTIAL t-DIAGNOSABILITY IN 
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Proof: There are two cases, t 5 t‘ and t > t’. For t 5 t’ ,  s = t 
and the inequality becomes n 2 nmin = 21 + 1, which is neces- 
sary and sufficient for t /s-diagnosability in D (n) designs, where 
Lt/2] 5 t ’ ,  as given in Theorem 3 of 141. (The expansion for s in 
Theorem 3 of [4], s = 2t - t’, is valid only for t 2 t’. For t < t ’ ,  
the correct expression is s = t.) 

Now consider the second case. 
(if) Assume the condition holds, but S is not t/s-diagnosable. 

Then, there exists a fault set F where IF1 5 t which generates a 
replacement set FR such that IFRI > s, where s is given in (10). 
However, it follows from Lemma 3 that, if there is at least one 
definitely good node, a maximal replacement set FR’ consists of c 
segments of nodes that are fault-free in the canonic fault set, each 
having size t - t’c, plus the t faulty nodes in C, for a total of 
c( t  - t’c) + t  nodes, where c is either rt/2t’] or Lt/2t’] depending 
on which produces the maximum value of c( t  -t’c)+t. Thus, it must 
be that there is no definitely good node, and all nodes are suspect. 
Specifically, nodes in R = V -FR’, where V is the set of all nodes, 
are suspect. We now show that this leads to a contradiction, and it 
must be that S is indeed t/s-diagnosable. 

It follows that IRI = n-s.  Sincet > t ’ ,  min(t, t’) = t’, and from 
( 9 ) , n - s  ? t ’+ l .Thus ,  /RI > t ’ + l .  SincenodesinRaresuspect, 
the set F’ = C U R - Fo is a set of smallest size where nodes in R 
are faulty which is consistent with a set of test outcomes produced by 
C and where Fo is the set of nodes that would be definitely bad if at 
least one definitely good node exists. Since C n R = 4 and Fo C C, 
we have 

IF’I = IRI + t - IF01 2 t’ + 1 + t - t’ = t + 1 (11) 

which is a contradiction. 
(only if) Suppose that S is t/s-diagnosable, but n < s + t’ + 1. 

Since n < s + t’ + 1, the set R of definitely good nodes is no larger 
than t’ in the worst case of a replacement set of s nodes, where s is 
given in the hypothesis. However, the set of test outcomes produced 
by a canonic fault set C can also be produced by F’ = C U R - Fo. 
Since IF’I = IF1 = t ,  R consists of suspects, not definitely good 
nodes. Q.E.D. 

For the special case o f t ’  = 1, Theorem 1 applies to the single loop 
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system. The statement in this case is identical to that of Theorem 1 of 
[4]. It follows from Theorem 1 that in a D l , , , ( n )  design if n < nmln, 
then there exists a set of t faulty nodes and a set of test outcomes 
such that this system is not sequentially t-diagnosable. Conversely, 
from Theorem 1, if n 2 nmin, there is no arrangement of t faulty 
nodes and no set of test outcomes such that all nodes are suspect. 
Since at least one faulty node can be identified, such a system is 
sequentially t-diagnosable. Thus, we have the following. 

Corollary: Design D 1  , I (n) is sequentially t-diagnosable iff 

n 2 nmin = s + min ( t , ’  t’) + 1 (12) 

where 

IV. CONCLUDING REMARKS 
Table I shows the value of s and nmin such that a Dl,,t(n) design is 

t/s-diagnosable for n 2 nmin. t’ varies across the columns and t 
varies down the rows. Each entry is s/smin. The column headed by 
t’ = 1 corresponds to a single loop system and nmin in this column 
agrees, as it should, with the values derived by Preparata, Metze, and 
Chien [7] for the lower bound on n such that a single loop system 
is sequentially t-diagnosable. The nonbold data represent previous 
results. For example, the nonbold data associated with t’ > Lt/2] is 
that of Karunanithi and Friedman [4], while the nonbold data asso- 
ciated with t’ = 1 is from [4] and [7]. The bold data represent data 
from the results of this paper not covered by these previous papers. 

Fig. 3 shows a three-dimensional plot of s versus t with t’ as a 
parameter for 1 5 t’ 5 10. The thin lines represent the data derived 
from the results of Karunanithi and Friedman [4], while the heavy 
lines represent the data derived by the results of this paper. This 
shows that, compared to higher order designs, it is much more diffi- 
cult to locate faults in single loop systems. That is, as one progresses 
towards designs with more tests, a smaller maximal replacement set 
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\ 

Fig. 3. s versus t and t’ required for t/s-diagnosability in D,, , / (n)  designs, 
for 1 5 t’ 5 10 and 1 5 t 5 20. 

\ 

Fig. 4. nmln versus t and t’ required for t/s-diagnosability in D l , f , ( n )  
designs, for 1 5 I ’  I 10 and 1 5 t 5 20, where n 2 nmln. 

is required for some fixed number of faults in the design. However, 
a point of diminishing returns is reached, where added tests produce 
only marginally smaller maximal replacement sets. 

We can obtain a simple expression for s as a function of t and 
t’ for large t .  Let g( t )  -J h(t) mean limf+m g(t)/h(t)  = 1. Then, 
the expressions within the ceiling and floor brackets of (10) can be 
replaced as follows: Lt/2t’j -J t/2t’ and [t/2t’l -J t/2t’, in which 
case, the arguments of the max operator in (10) have the same form, 
and we can write 

t2  
4 t ‘ .  

S - J -  

For large t , s is directly proportional to t2  and inversely proportional 
to t‘ .  Thus, the curves for fixed t’ in Fig. 3 are approximately half 
parabolas. This is most evident in the curve for t’ = 1. It is also 
worth noting that for small t ,  specifically, t 5 t’ ,  s is the linear 
function s = t ,  since, for this case, all faulty nodes can be uniquely 
identified. This is most evident in the curve for t’ = 10. 

Fig. 4 shows a three-dimensional plot of nmln versus t‘ and t .  This 
resembles the plot of Fig. 3 and shows the large influence of the s 
term in the expression for nmin. The thin lines represent data due 
to Karunanithi and Friedman [4] and Preparata, Metze, and Chien 

[7], while the heavy lines represent data derived from results of this 
paper. Similarly, it can be seen that 

Thus, for large t ,  approximately t2/4t ’  nodes are necessary for a 
D1, f ,!n)  design to be sequentially t-diagnosable. 

It is interesting that as little as t’ + 1 definitely good nodes can 
exist in a tls-diagnosable system (the minimum number of nodes in 
R ,  as shown in Theorem 1) and that as little as t‘ definitely bad nodes 
can exist. So, while the number of suspects grows quadratically, the 
minimum number of definitely good and definitely bad nodes remains 
constant. Thus, as t increases, the fraction of the total number of 
nodes that are suspect can approach 100%. 

APPENDIX 
EXAMPLE ILLUSTRATING THE PROOF OF LEMMA I 

Lemma I :  Let FR be a maximal replacement set in a Dl,f / (n)  
design corresponding to a set of test outcomes produced by a fault set 
of size t or smaller, where t > t’. Then, FR is a set of consecutive 
nodes. 

Proof: Proceeds by contradiction. That is, we assume there ex- 
ists a maximal replacement set FR which does not consist of consec- 
utive nodes and show that this is impossible. Specifically, we show 
that we can rearrange certain nodes (without changing their fault- 
free/faulty status) to produce a replacement set that is larger than 
FR. 

As an example of the proof, consider the D1,2(  19) design shown 
in Fig. 5. The syndrome shown consists of six fail test outcomes 
(indicated by 1). If t = 8, there can be at most eight faulty nodes. 
With t = 8, there are four definitely bad nodes divided into two 
subsets (u4 ,  u 5 }  and (u13, uI4}  (indicated by shading consisting of 
vertical lines). These are definitely bad because, if any one is fault- 
free, there are more than eight faulty nodes. For example, if U13 is 
fault-free, uI2 is faulty, having passed ~ 1 3 .  Similarly, U I I  is faulty, 
having passed uI2,  etc. Indeed, if ~ 1 3  is fault-free, there are at least 
seven other nodes that are faulty. There are seven definitely good 
units divided into two subsets {UO, uI, 242, u j }  and { U I O ,  U I I ,  u12) 
(indicated by the absence of shading). These are definitely good, 
since if any are faulty, we can identify more than eight faulty nodes. 
The remaining nodes are suspect (indicated by shading consisting of 
minuscule dots). These are divided into two subsets (U69 u7, U S ,  ~9 } 
and ( U l 5 ,  U163 ~ 1 7 ,  U I S } .  The definitely bad and suspect nodes com- 
prise the replacement set FR. Following the proof, let 

B, = (U4, U5, U69 U79 U S ,  U9) *Bi =z (U49 U-5) 

B;+I = {U133 U149 U159 U167 U l 7 ,  U I ~ }  *B~+I  = (1113, ul4). 

Thus, F R  = B, U B;+l. *B; and *Bi+l  are the first t = 2 nodes 
in B; and B;+I, respectively. The proof of Lemma 1 shows that 
IC; 1 > (*B;+l I. This is indeed true here. 

Following the proof, we have G; -GT * = (ul0}, which is removed 
and inserted immediately in front of *B;, that is, between u3 and 
u4.  This yields the system of Fig. 6. The test results affected by 
the transplant of G; - Gf* = (ul0} are outlined in Fig. 6. The 
numbers associated with arrows indicate the condition in the proof 
that specifies the,test value. Considering the resulting syndrome, we 
find that the definitely bad, suspect, and definitely good nodes are 
as shown in Fig. 6. Specifically, u4 and us are definitely bad, as 
before. ~ 1 3  and ~ 1 4 ,  which were definitely bad, are now suspect. 
All suspect nodes before the change are still suspect. However, u l l  

and u I 2 ,  which were definitely good, are now suspect (for example, 
(u4, us, U 6 ,  U,, us,  4, uI1,  u12}  can be a set of faulty nodes which 
produces the syndrome shown). Thus, the total number of definitely 
bad and suspect nodes is larger by 2. This results in a contradiction; 
the claim that the original replacement set is maximal is wrong. 
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u u u u u u u u u u u u u u u u u u u  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Definitely Bad Nodes - MyII#l) and ( ~ ~ u ~ ~ l )  
Definitely Good Nodes - (U 0, u 1 ,  u2, u 3  ) and (U 
Suspect Nodes - and f 

u 1 1 ,  u 12 ) 
Fig. 5. Example of a D1,2(19) design with a replacement set that does not 

have consecutive nodes. 

1 

u u u u u ~ u u u u u u u u u u u u u u  4 5 6 7 8 9 11 12 13 14 15 16 17 18 0 1  2 3  

Definitely Bad Nodes - “IIN) 
Suspect Nodes - 
Definitely GoodNodes- ( u o , u ~ , u ~ , u ~ , ~ ~ o )  

Fig. 6. The system of Fig. 5 rearranged to produce a larger replacement 
set. 

Interestingly, the resulting replacement set consists of consecutive 
nodes. Indeed, it is a maximal replacement set. 

Algorithm-Based Fault Detection for Signal Processing 
Applications 
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A.  L. NARASIMHA REDDY AND P. BANERJEE 

Abstmct- The increasing demands for high-performance signal pro- 
cessing along with the availability of inexpensive high-performance pro- 
cessors have resulted in numerous proposals for special-purpose ar- 
ray processors for signal processing applications. This correspondence 
presents a functional-level concurrent error-detection scheme for such 
VLSI signal processing architectures proposed for the FFT and QR fac- 
torization. Some basic properties involved in such computations are 
used to check the correctness of the computed output values. This 
fault detection scheme is shown to be applicable to a class of prob 
lems rather than a particular problem unlike the earlier algorithm-based 
error-detection techniques. The effects of roundoffhruncation errors due 
to finite-precision arithmetic are evaluated. It is shown that the error 
coverage is high with large word sizes. 

Index Terms- Algorithm-based fault detection, FFT, finite-precision 
errors, QR factorization, signal processing applications. 
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